

June 9, 2011

#### Florida Department of Environmental Protection

Southwest District 13051 North Telecom Parkway Temple Terrace, Florida 33637-0926

Attention: Mr. Robert Sellers, CHMM

Environmental Specialist III

Subject: Response to April 5, 2011 FDEP Comments

**Countryside Executive Golf Course** 

2506 Countryside Blvd. Clearwater, Florida

HSA Project Number 601-5982-00

Dear Mr. Sellers:

**HSA Engineers & Scientists** (**HSA**), on behalf of Executive Corporation of Clearwater, Inc., respectfully submits this response to the Florida Department of Environmental Protection (FDEP) April 5, 2011, correspondence that provided comments to the June, 2010, *Remedial Action Plan* and Response to the Department's Comments dated January 2011 prepared by HSA for the above-referenced site. For ease of review, the Department's comments are presented below, followed by HSA's responses.

Comment 1: The response to comment 9 states that Monitoring wells MW-22, MW-23, MW-25,

MW-26, DW-2, DW-3 and DW-4 are proposed as point of compliance wells and shall not exceed the applicable default Groundwater Cleanup Target Level (GCTL) of 10  $\mu$ g/L for arsenic is present in MW-23 at a concentration of 14.7  $\mu$ g/L. This well should be resampled and, if arsenic concentrations continue to exceed the GCTL of 10  $\mu$ g/L for arsenic, additional delineation may be necessary.

Response:

On May 26, 2011 HSA conducted groundwater sampling at existing monitoring well MW-23 per your request. Monitoring well MW-23 was sampled and analyzed for the presence of arsenic by EPA Method 6010. Prior to sampling, depth to water measurements were gathered to determine groundwater elevations at all accessible monitoring wells. A summary of groundwater elevation data is included as **Table 1**. Groundwater analytical data is summarized in **Table 2**.

#### www.hsa-env.com

4019 East Fowler Avenue / Tampa, Florida 33617 Tel: (813) 971-3882 / Fax: (813) 971-1862

Locations throughout the Southeastern United States

Client Focused Solution Oriented Quality Driven



Current groundwater elevation data indicate a general decrease in depth to water since the last sampling in December (resulting in a higher groundwater table). Based on the most recent data, groundwater flow is generally towards the northnorthwest across the site with some variations within the southern portion of the site due to the presence of ditches and/or ponds. The horizontal hydraulic gradients were measured between monitoring wells MW-23 and MW-16 at in southern part of the site and between monitoring wells MW-10 and MW-16 at the eastern part and estimated at 0.048 feet per foot (ft/ft) and 0.011 ft/ft, respectively. A groundwater elevation contour map for the shallow zone is included as **Figure 1**. The current groundwater flow direction is generally consistent with historical observations.

Prior to collecting the groundwater sample, the monitoring well was purged in accordance with the FDEP Standard Operating Procedures (DEP-SOP001/01) for Groundwater Sampling (FS 2200). A peristaltic pump equipped with polyethylene and silicone tubing was used to purge the monitoring well. During the purging, field parameters including pH, temperature, dissolved oxygen, specific conductance and turbidity were measured until the parameter stabilized. The stability parameter limits were the following: temperature +/- 0.2 degrees Celsius (°C); pH +/- 0.2 standard units (SU); specific conductance +/- 5.0% of reading; dissolved oxygen (DO) +/- 0.2 milligrams per liter (mg/L) or 10% (whichever is greater); and turbidity +/- 5 Nephelometric Turbidity Units (NTUs) or 10% (whichever is greater), preferably less than 20 NTUs. A completed groundwater sampling data sheet is included in **Appendix A**.

The samples were collected in accordance with the Florida Department of Environmental Protection Standard Operating Procedures (SOPs) protocol and submitted to PEL Laboratories, Inc. for analysis for the presence of arsenic using EPA Method 6010. The groundwater analytical data did not indicated the presence of arsenic at detectable levels at monitoring well MW-23. Groundwater analytical results are summarized in **Table 3** and **Figure 2.** The complete laboratory analytical report and chain-of-custody (COC) are provided in **Appendix B.** 

Comment 2: The action levels noted in response to comment 9 are not acceptable. Action Levels pursuant to Rule 62-780.690(8)(e), F.A.C. shall be the GCTLs for any well that was previously non-detect, or had concentrations less than the GCTLs; for wells that currently exceed the GCTLs, the action levels shall be an increase in concentration of 50% or more from the current concentration reported of the Natural Attenuation Default Concentration (NADC), whichever is lower. For



MW-14, which had arsenic at a concentration of 17.4  $\mu$ g/L, an action level of 100% is acceptable.

Response:

Acknowledged. Monitoring wells MW-3, MW-5, MW-13, and MW-14 are proposed contaminant plume wells with the following action levels.

| Location | Concentration Level | Action Level         |
|----------|---------------------|----------------------|
| MW-3     | 50%                 | $82.5 \mu g/L$       |
| MW-5     | 50%                 | $45.3 \mu g/L$       |
| MW-13    | 50%                 | $52.1 \mu\text{g/L}$ |
| MW-14    | 100%                | $34.8 \mu g/L$       |
| MW-10    | GCTL                | 10 μg/L              |
| MW-20    | GCTL                | 10 μg/L              |
| MW-21    | GCTL                | $10 \mu\mathrm{g/L}$ |

Comment 3: Monitoring points located beyond the compliance boundary lines must not exceed applicable GCTLs and the point of compliance boundary lines must not extend beyond approved limits due to any changes in arsenic concentrations.

Response:

Acknowledged. Monitoring wells MW-23, MW-25, MW-26, DW-2, DW-3, and DW-4 are proposed as the point of compliance wells and shall not exceed the applicable default GCTL of  $10~\mu g/L$ . As discussed above, the monitoring well MW-23 recently sampled, does not exhibit a concentration of arsenic at detectable levels. Temporary Point of Compliance (TPOC) wells and the compliance boundary lines are included in the attached **Figure 2**.

Comment 4:

Isoconcentration contour lines should be reconstructed for MW-14 and MW-23 to show lines of compliance interpolated proportionately between known monitoring well concentrations. Include all groundwater results as less than the reported Method Detection Limits (<MDLs). Please note that Point of Compliance (POC) boundary lines must be accurately drawn since these compliance lines will be used to determine which properties must be included in the TPOC publication.

Response:

Acknowledged. The revised groundwater analytical map includes the isoconcentration contour lines reconstructed accordingly and included as a **Figure 2.** Although, isoconcentration contour lines were interpolated proportionally between known monitoring wells MW-13 and MW-17, based on the groundwater flow direction, the contaminant plume in vicinity of monitoring well MW-13 less likely to be present beyond the boundary to the south.



flow direction, the contaminant plume in vicinity of monitoring well MW-13 less likely to be present beyond the boundary to the south.

We trust that the above responses are adequate to provide the Department information required to approve the RAP. If you have any questions during your review of these responses, please feel free to contact me at (813) 971-3882.

Sincerely,

**HSA Engineers & Scientists** 

Brian Moore, P.E.

Environmental Program Manager



#### **CERTIFICATION**

In accordance with Chapter 471, Florida Statutes, I hereby certify that, to the best of my knowledge, all engineering plans, specifications, and calculations included herein are in accordance with standard and appropriate engineering practices.

Brian Moore, P.E

Florida Registration N Environmental Progra



**TABLES** 

| Well ID   | TOC Elevation | Depth to Water | Water Elevation |
|-----------|---------------|----------------|-----------------|
|           | 6/7           | //2006         |                 |
| DW-1      | 100           | 6.65           | 93.35           |
| TW-1      | 103.52        | 8.51           | 95.01           |
| TW-2      | 104.58        | 9.18           | 95.4            |
| TW-3      | 102.66        | 6.92           | 95.74           |
| TW-4      | 102.77        | 7.74           | 95.03           |
| TW-10     | 100.56        | 6.81           | 93.75           |
| TW-11     | 100.48        | 7.74           | 92.74           |
| TW-12     | 102.92        | 8.32           | 94.6            |
| MW-1R     | 105.78        | 5.08           | 100.7           |
| Pond A    | -             | -              | 93.62           |
| T GHG T I |               | 2/2006         | 75102           |
| DW-1      | 100           | 6.71           | 93.29           |
| TW-1      | 103.52        | 6.56           | 96.96           |
| TW-2      | 104.58        | 7.23           | 97.35           |
| TW-3      | 102.66        | 4.36           | 98.3            |
| TW-4      | 102.66        | 5.81           | 96.96           |
| TW-6      | 105.45        | 7.29           |                 |
|           |               |                | 98.16           |
| TW-7      | 106.05        | 9.16           | 96.89           |
| TW-9      | NM            | 8.61           |                 |
| TW-10     | 100.56        | 4.86           | 95.7            |
| TW-11     | 100.48        | 5.22           | 95.26           |
| TW-12     | 102.92        | 6.37           | 96.55           |
| TW-14     | 105.5         | 8.06           | 97.44           |
| TW-15     | 106.21        | 8.45           | 97.76           |
| MW-1      | 105.78        | 9.01           | 96.77           |
| MW-2      | 106.82        | 9.51           | 97.31           |
| MW-3      | 103.44        | 6.27           | 97.17           |
| MW-4      | 102.94        | 6.41           | 96.53           |
| Pond A    |               |                | 96.31           |
| Pond B    |               |                | 97.25           |
|           |               | 30/2006        |                 |
| TW-1      | 103.52        | 7.04           | 96.48           |
| TW-2      | 104.58        | 4.05           | 100.53          |
| TW-3      | 102.66        | 5.7            | 96.96           |
| TW-4      | 102.77        | 6.75           | 96.02           |
| TW-5      | NM            | 7.52           |                 |
| TW-6      | 105.45        | 7.8            | 97.65           |
| TW-7      | 106.05        | 10.27          | 95.78           |
| TW-8      | NM            | 8.59           |                 |
| TW-10     | 100.56        | 7.3            | 93.26           |
| TW-11     | 100.48        | 6.74           | 93.74           |
| TW-12     | 102.92        | 6.96           | 95.96           |
| TW-13     | NM            | 5.42           | -               |
| TW-14     | 105.5         | 8.8            | 96.7            |
| TW-15     | 106.21        | 9.05           | 97.16           |
| TW-16     | NM            | 8              |                 |
| TW-17     | NM            | 2.32           |                 |
| MW-1      | 105.78        | 4.58           | 101.2           |
| MW-2      | 106.82        | 10.33          | 96.49           |
| MW-3      | 103.44        | 6.94           | 96.5            |
| MW-4      | 102.94        | 7.04           | 95.9            |

| Well ID                | TOC Elevation | Depth to Water | Water Elevation |
|------------------------|---------------|----------------|-----------------|
|                        | 11/2          | 29/2006        |                 |
| DW-1                   | 100           | 3.18           | 96.82           |
| TW-1                   | 103.52        | 7.41           | 96.11           |
| TW-2                   | 104.58        | 7.26           | 97.32           |
| TW-3                   | 102.66        | 8.45           | 94.21           |
| TW-4                   | 102.77        | 6.41           | 96.36           |
| TW-5                   | NM            | 6.86           |                 |
| TW-6                   | 105.45        | 7.42           | 98.03           |
| TW-7                   | 106.05        | 7.24           | 98.81           |
| TW-10                  | 100.56        | 7.3            | 93.26           |
| TW-11                  | 100.48        | 3.51           | 96.97           |
| TW-12                  | 102.92        | 6.76           | 96.16           |
| TW-13                  | NM            | 6.34           |                 |
| TW-14                  | 105.5         | 7.85           | 97.65           |
| TW-15                  | 106.21        | 9.12           | 97.09           |
| TW-16                  | NM            | 7.24           | -               |
| TW-17                  | NM            | 7.24           |                 |
| TW-18                  | NM            | 6.31           | -               |
| TW-19                  | NM            | 6.71           | -               |
| MW-1                   | 105.78        | 9.58           | 96.2            |
| MW-2                   | 106.82        | 10.33          | 96.49           |
| MW-3                   | 103.44        | 6.94           | 96.5            |
| MW-4                   | 102.94        | 7.04           | 95.9            |
| MW-20                  | NM            | NM             |                 |
| Pond A                 |               |                | 95.75           |
| Pond B                 |               |                | 96.3            |
|                        | 9/30          | /2008**        |                 |
| MW-5                   | 74.34         | 4.98           | 69.36           |
| MW-6                   | 75.9          | 4.73           | 71.17           |
| MW-7                   | 75.37         | DRY            | dry             |
| MW-8                   | 76.18         | 6.45           | 69.73           |
| MW-9                   | 76.04         | 5.87           | 70.17           |
| MW-10                  | 80.85         | 9.63           | 71.22           |
| MW-11                  | 76.53         | 5.56           | 70.97           |
| MW-12                  | 79.48         | 7.7            | 71.78           |
| MW-13                  | 76.29         | 4.03           | 72.26           |
| Staff Guage 1 (Pond 2) | 69.96         |                | NM              |
| Staff Guage 2 (Ditch)  | 69.87         |                | NM              |
| Staff Guage 3 (Pond 1) | 71.94         |                | NM              |
| <u> </u>               | 11/           | 7/2008         |                 |
| MW-3                   | 74.34         | 6.87           | 67.47           |
| MW-5                   | 74.34         | 7.97           | 66.37           |
| MW-6                   | 75.9          | 7.71           | 68.19           |
| MW-7                   | 75.37         | 6.86           | 68.51           |
| MW-8                   | 76.18         | 9.41           | 66.77           |
| MW-9                   | 76.04         | 8.81           | 67.23           |
| MW-10                  | 80.85         | 13.08          | 67.77           |
| MW-11                  | 76.53         | 8.47           | 68.06           |
| MW-12                  | 79.48         | 10.59          | 68.89           |
| MW-13                  | 76.29         | 6.78           | 69.51           |
| Staff Guage 1 (Pond 2) | 69.96         | 3.65           | 67.61           |
| Staff Guage 2 (Ditch)  | 69.87         | 4.04           | 67.91           |
| Staff Guage 3 (Pond 1) | 71.94         | 3.58           | 69.52           |
| J \ ' - ' - '          |               |                |                 |

| Well ID                | TOC Elevation | Depth to Water | Water Elevation |
|------------------------|---------------|----------------|-----------------|
|                        | 12/12         | /2008          |                 |
| MW-3                   | 74.34         | 7.72           | 66.62           |
| MW-5                   | 74.34         | 8.31           | 66.03           |
| MW-6                   | 75.9          | 8.47           | 67.43           |
| MW-7                   | 75.37         | 7.97           | 67.4            |
| MW-8                   | 76.18         | 9.56           | 66.62           |
| MW-9                   | 76.04         | 8.93           | 67.11           |
| MW-10                  | 80.85         | 13.21          | 67.64           |
| MW-11                  | 76.53         | 8.63           | 67.9            |
| MW-12                  | 79.48         | 10.69          | 68.79           |
| MW-13                  | 76.29         | 7.12           | 69.17           |
| MW-14                  | 70.65         | 4.22           | 66.43           |
| MW-15                  | 73.15         | 6.07           | 67.08           |
| MW-16                  | 77.17         | 6.46           | 70.71           |
| MW-17                  | 75.34         | 3.75           | 71.59           |
| MW-18                  | 75.03         | 6.98           | 68.05           |
| MW-19                  | 74.54         | 8.2            | 66.34           |
| MW-20                  | 73.52         | 7.98           | 65.54           |
| MW-21                  | 73.77         | 7.41           | 66.36           |
| MW-22                  | 79.41         | 11.73          | 67.68           |
| MW-23                  | 76.31         | 7.7            | 68.61           |
| Staff Guage 1 (Pond 2) | 69.96         | DRY            |                 |
| Staff Guage 2 (Ditch)  | 69.87         | 3.98           | 67.85           |
| Staff Guage 3 (Pond 1) | 71.94         | DRY            |                 |
|                        | 12/17         | /2008          |                 |
| MW-3                   | 74.34         | 7.86           | 66.48           |
| MW-5                   | 74.34         | 8.12           | 66.22           |
| MW-6                   | 75.9          | 8.43           | 67.47           |
| MW-7                   | 75.37         | 8.16           | 67.21           |
| MW-8                   | 76.18         | 9.57           | 66.61           |
| MW-9                   | 76.04         | 9.00           | 67.04           |
| MW-10                  | 80.85         | 13.31          | 67.54           |
| MW-11                  | 76.53         | 8.77           | 67.76           |
| MW-12                  | 79.48         | 10.74          | 68.74           |
| MW-13                  | 76.29         | 7.14           | 69.15           |
| MW-14                  | 70.65         | 4.33           | 66.32           |
| MW-15                  | 73.15         | 6.16           | 66.99           |
| MW-16                  | 77.17         | 6.52           | 70.65           |
| MW-17                  | 75.34         | 3.80           | 71.54           |
| MW-18                  | 75.03         | 6.98           | 68.05           |
| MW-19                  | 74.54         | 8.25           | 66.29           |
| MW-20                  | 73.52         | 6.97           | 66.55           |
| MW-21                  | 73.77         | 6.12           | 67.65           |
| MW-22                  | 79.41         | 11.83          | 67.58           |
| MW-23                  | 76.31         | 7.83           | 68.48           |
| Staff Guage 1 (Pond 2) | 69.96         | DRY            |                 |
| Staff Guage 2 (Ditch)  | 69.87         | 3.89           | 67.76           |
| Staff Guage 3 (Pond 1) | 71.94         | DRY            |                 |

| Well ID                 | TOC Elevation  | Depth to Water | Water Elevation |
|-------------------------|----------------|----------------|-----------------|
|                         | 7/0            | 6/2009         |                 |
| MW-1RR                  | 74.42          | 5.19           |                 |
| MW-3                    | 74.34          | 4.1            | 70.24           |
| MW-5                    | 74.34          | 5.31           | 69.03           |
| MW-6                    | 75.9           | 4.69           | 71.21           |
| MW-7                    | 75.37          | 4.09           | 71.28           |
| MW-8                    | 76.18          | 9.73           | 66.45           |
| MW-9                    | 76.04          | 8.88           | 67.16           |
| MW-10                   | 80.85          | 12.69          | 68.16           |
| MW-11                   | 76.53          | 8.06           | 68.47           |
| MW-12                   | 79.48          | 10.96          | 68.52           |
| MW-13                   | 76.29          | 4.93           | 71.36           |
| MW-14                   | 70.65          | 2.4            | 68.25           |
| MW-15                   | 73.15          | 5.61           | 67.54           |
| MW-16                   | 77.17          | 5.34           | 71.83           |
| MW-17                   | 75.34          | 2.39           | 72.95           |
| MW-18                   | 75.03          | 4.96           | 70.07           |
| MW-19                   | 74.54          | 4.45           | 70.09           |
| MW-20                   | 73.52          | 5.2            | 68.32           |
| MW-21                   | 73.77          | 5.44           | 68.33           |
| MW-22                   | 79.41          | 11.76          | 67.65           |
| MW-23                   | 76.31          | 4.52           | 71.79           |
| MW-24                   | 74.73          | 4.89           | 69.84           |
| MW-25                   | 73.76          | 4.2            | 69.56           |
| Staff Guage 1 (Pond 2)  | 69.96          | 4.2            | 68.16           |
| Staff Guage 2 (Ditch)   | 69.87          | 3.66           | 67.53           |
| Staff Guage 3 (Pond 1)  | 71.94          | bent           |                 |
|                         | **             | 20/2009        |                 |
| MW-1RR                  | 74.42          | 7.94           | 66.48           |
| MW-3                    | 74.34          | 5.44           | 68.9            |
| MW-5                    | 74.34          | 7.25           | 67.09           |
| MW-6                    | 75.9           | 7.14           | 68.76           |
| MW-7                    | 75.37          | 5.89           | 69.48           |
| MW-8                    | 76.18          | 10.09          | 66.09           |
| MW-9                    | 76.04          | 9.43           | 66.61           |
| MW-10                   | 80.85          | 13.73          | 67.12           |
| MW-11                   | 76.53          | 9.29           | 67.24           |
| MW-12                   | 79.48          | 11.58          | 67.9            |
| MW-13                   | 76.29          | 7.42           | 68.87           |
| MW-14                   | 70.65          | 3.54           | 67.11           |
| MW-15                   | 73.15          | 6.51           | 66.64           |
| MW-16                   | 77.17          | 6.4<br>3.74    | 70.77           |
| MW-17<br>MW-18          | 75.34          | 3.74<br>7.08   | 71.6            |
| MW-18<br>MW-19          | 75.03<br>74.54 |                | 67.95           |
| MW-19<br>MW-20          | 73.52          | 7.21<br>6.33   | 67.33<br>67.19  |
| MW-20<br>MW-21          | 73.77          | 6.59           | 67.18           |
| MW-21<br>MW-22          | 79.41          | 12.42          | 66.99           |
| MW-23                   | 76.1           | 7.55           | 68.55           |
| MW-24                   | 74.73          | 7.55           | 67.73           |
| MW-25                   | 73.76          | 6.05           | 67.71           |
| MW-26                   | 70.51          | 3.58           | 66.93           |
| MW-27                   | 71.11          | 4.25           | 66.86           |
| MW-28                   | 70.18          | 3.41           | 66.77           |
| DW-2                    | 71.06          | 3.16           | 67.9            |
| DW-3                    | 72.36          | 4.01           | 68.35           |
| DW-4                    | 71.3           | 6.51           | 64.79           |
| Staff Guage 1 (Pond 2)  | 69.96          | 3.83           | 67.79           |
| Staff Guage 2 (Ditch)   | 69.87          | 3.57           | 67.44           |
| Staff Guage 3 (Pond 1)  | 71.94          | bent           |                 |
| Juli Guage J (1 Ollu 1) | / 1.24         | OCIII          |                 |

| Well ID                 | TOC Elevation           | Depth to Water           | Water Elevation             |
|-------------------------|-------------------------|--------------------------|-----------------------------|
|                         | 11/                     | 5/2009                   |                             |
| MW-1RR                  | 74.42                   | 8.4                      | 66.02                       |
| MW-3                    | 74.34                   | 6.39                     | 67.95                       |
| MW-5                    | 74.34                   | 7.91                     | 66.43                       |
| MW-6                    | 75.9                    | 7.9                      | 68                          |
| MW-7                    | 75.37                   | 7.08                     | 68.29                       |
| MW-8                    | 76.18                   | 10.18                    | 66                          |
| MW-9                    | 76.04                   | 9.55                     | 66.49                       |
| MW-10                   | 80.85                   | 13.84                    | 67.01                       |
| MW-11                   | 76.53                   | 9.52                     | 67.01                       |
| MW-12                   | 79.48                   | 11.67                    | 67.81                       |
| MW-13                   | 76.29                   | 7.81                     | 68.48                       |
| MW-14                   | 70.65                   | 3.92                     | 66.73                       |
| MW-15                   | 73.15                   | 6.66                     | 66.49                       |
| MW-16                   | 77.17                   | 6.53                     | 70.64                       |
| MW-17                   | 75.34                   | 4.00                     | 71.34                       |
| MW-18                   | 75.03                   | 7.58                     | 67.45                       |
| MW-19                   | 74.54                   | 7.89                     | 66.65                       |
| MW-20                   | 73.52                   | 6.72                     | 66.8                        |
| MW-21                   | 73.77                   | 7.05                     | 66.72                       |
| MW-22                   | 79.41                   | 12.53                    | 66.88                       |
| MW-23                   | 76.1                    | 8.08                     | 68.02                       |
| MW-24                   | 74.73                   | 7.61                     | 67.12                       |
| MW-25                   | 73.76                   | 6.62                     | 67.14                       |
| MW-26                   | 70.51                   | 3.73                     | 66.78                       |
| MW-27                   | 71.11                   | 4.24                     | 66.87                       |
| MW-28                   | 70.18                   | 3.49                     | 66.69                       |
| DW-2                    | 71.06                   | 3.88                     | 67.18                       |
| DW-3                    | 72.36                   | 3.79                     | 68.57                       |
| DW-4                    | 71.3                    | 6.65                     | 64.65                       |
| Staff Guage 1 (Pond 2)  | 69.96                   | 3.4                      | 67.36                       |
| Staff Guage 2 (Ditch)   | 69.87                   | 3.59                     | 67.46                       |
| Staff Guage 3 (Pond 1)  | 71.94                   | dry                      |                             |
|                         | 12/                     | 9/2010                   |                             |
| MW-1RR                  | 74.42                   |                          |                             |
| MW-3                    | 74.34                   | 10.24                    | 64.1                        |
| MW-5                    | 74.34                   | 8.06                     | 66.28                       |
| MW-6                    | 75.9                    | 5.52                     | 70.38                       |
| MW-7                    | 75.37                   | 8.64                     | 66.73                       |
| MW-8                    | 76.18                   | 10.22                    | 65.96                       |
| MW-9                    | 76.04                   | 9.50                     | 66.54                       |
| MW-10                   | 80.85                   | 13.89                    | 66.96                       |
| MW-11                   | 76.53                   | 12.8                     | 63.73                       |
| MW-12                   | 79.48                   | 11.71                    | 67.77                       |
| MW-13                   | 76.29                   | 8.05                     | 68.24                       |
| MW-14                   | 70.65                   | 7.66                     | 62.99                       |
| MW-15                   | 73.15                   | NM                       | NM                          |
| MW-16                   | 77.17                   | 6.9                      | 70.27                       |
| MW-17                   | 75.34                   | NM                       | NM                          |
| MW-18                   | 75.03                   | 8.2                      | 66.83                       |
| MW-19                   | 74.54                   | 8.81                     | 65.73                       |
| MW-20                   | 73.52                   | 7.39                     | 66.13                       |
| MW-21                   | 73.77                   | 7.84                     | 65.93                       |
| MW-22                   | 79.41                   | 12.53                    | 66.88                       |
| MW-23                   | 76.1                    | 8.2                      | 67.9                        |
| MW-24                   | 74.73                   | 8.8                      | 65.93                       |
|                         |                         | 7.8                      | 65.96                       |
| MW-25                   | 73.76                   | 7.0                      |                             |
|                         | 73.76<br>70.51          | 4.6                      | 65.91                       |
| MW-25<br>MW-26<br>MW-27 | 70.51                   | 4.6                      | 65.91                       |
| MW-26<br>MW-27          | 70.51<br>71.11          | 4.6<br>Destroyed         | 65.91<br>Destroyed          |
| MW-26<br>MW-27<br>MW-28 | 70.51<br>71.11<br>70.18 | 4.6<br>Destroyed<br>4.20 | 65.91<br>Destroyed<br>65.98 |
| MW-26<br>MW-27          | 70.51<br>71.11          | 4.6<br>Destroyed         | 65.91<br>Destroyed          |

| Well ID   | TOC Elevation Depth to Water |       | Water Elevation |  |  |  |  |
|-----------|------------------------------|-------|-----------------|--|--|--|--|
| 5/26/2011 |                              |       |                 |  |  |  |  |
| MW-1RR    | 74.42                        | 8.35  | 66.07           |  |  |  |  |
| MW-3      | 74.34                        | 7.44  | 66.9            |  |  |  |  |
| MW-5      | 74.34                        | 8     | 66.34           |  |  |  |  |
| MW-6      | 75.9                         | 7.79  | 68.11           |  |  |  |  |
| MW-7      | 75.37                        | 5.6   | 69.77           |  |  |  |  |
| MW-8      | 76.18                        | 10.31 | 65.87           |  |  |  |  |
| MW-9      | 76.04                        | 9.55  | 66.49           |  |  |  |  |
| MW-10     | 80.85                        | 13.92 | 66.93           |  |  |  |  |
| MW-11     | 76.53                        | 12.54 | 63.99           |  |  |  |  |
| MW-12     | 79.48                        | 11.65 | 67.83           |  |  |  |  |
| MW-13     | 76.29                        | 7.93  | 68.36           |  |  |  |  |
| MW-14     | 70.65                        | 4.16  | 66.49           |  |  |  |  |
| MW-15     | 73.15                        | 6.8   | 66.35           |  |  |  |  |
| MW-16     | 77.17                        | 6.75  | 70.42           |  |  |  |  |
| MW-17     | 75.34                        | 4.00  | 71.34           |  |  |  |  |
| MW-18     | 75.03                        | 7.82  | 67.21           |  |  |  |  |
| MW-19     | 74.54                        | 8.45  | 66.09           |  |  |  |  |
| MW-20     | 73.52                        | 7     | 66.52           |  |  |  |  |
| MW-21     | 73.77                        | 7.55  | 66.22           |  |  |  |  |
| MW-22     | 79.41                        | 9.62  | 69.79           |  |  |  |  |
| MW-23     | 76.1                         | 8.15  | 67.95           |  |  |  |  |
| MW-24     | 74.73                        | 8.1   | 66.63           |  |  |  |  |
| MW-25     | 73.76                        | 7.1   | 66.66           |  |  |  |  |
| MW-26     | 70.51                        | 4.02  | 66.49           |  |  |  |  |
| MW-27     | 71.11                        | 4.64  | 66.47           |  |  |  |  |
| MW-28     | 70.18                        | 3.62  | 66.56           |  |  |  |  |
| DW-2      | 71.06                        | 3.19  | 67.87           |  |  |  |  |
| DW-3      | 72.36                        | 3.83  | 68.53           |  |  |  |  |
| DW-4      | 71.3                         | 9.96  | 61.34           |  |  |  |  |

Notes:

TOC-top of casing NM- Not Measured

NM- Not Measured

 $<sup>\</sup>ast\ast$  Monitor wells were surveyed to NAVD 88 by Florida Design Consultants, Inc., October 2008

#### Table 2 Summary of Groundwater and Surface Water Analytical Data Countryside Executive Golf Course, Clearwater, Florida HSA Project Number 601-5982-00

|          | Sample Date          | Arsenic (μg/l)  |
|----------|----------------------|-----------------|
| Point ID | GCTL                 | 10              |
| 1 omt 15 | NADSC                | 100             |
|          | FSWC                 | 50              |
|          | 08/27/04             | 470             |
|          | 10/07/04             | 620             |
| TW-1     | 11/16/04             | 180             |
|          | 10/30/06             | 37              |
|          | 11/29/06             | 34              |
|          | monitor well mis     |                 |
|          | 10/06/04             | 15              |
| TW-2     | 11/16/04<br>10/30/06 | 8.2 I<br><4.8   |
| 1 W-2    | 11/30/06             | 15.7            |
|          | monitor well mis     |                 |
|          | 10/06/04             | 100             |
|          | 11/15/04             | 23              |
| TW-3     | 10/31/06             | 13              |
|          | 11/30/06             | 12.3            |
|          | monitor well mis     |                 |
|          | 10/06/04             | 87              |
|          | 11/15/04             | 75              |
| TW-4     | 10/30/06             | 72              |
|          | 11/29/06             | 360             |
|          | monitor well mis     | ssing/destroyed |
|          | 10/07/04             | 330             |
|          | 11/16/04             | 540             |
| TW-5     | 10/30/06             | 700             |
|          | 11/29/06             | 661             |
|          | monitor well mis     |                 |
|          | 10/07/04             | 8.4             |
| TW-6     | 10/30/06             | 15 I            |
|          | 11/29/06             | 11.2            |
|          | monitor well mis     |                 |
|          | 10/07/04<br>01/13/05 |                 |
| TW-7     | 10/30/06             | <2.8<br>14 I    |
| 1 W-7    | 11/30/06             | 12.4            |
|          | monitor well mis     |                 |
|          | 11/15/04             | 3.5 I           |
| TW-8     | 10/31/06             | 21              |
| ***      | monitor well mis     |                 |
|          | 11/15/04             | 4.4 I           |
| TW-9     | monitor well mis     |                 |
|          | 11/15/04             | <2.8            |
| TW-10    | 10/30/06             | 46              |
|          | monitor well mis     | ssing/destroyed |
|          | 11/15/04             | 13              |
| TW-11    | 10/31/06             | <4.8            |
| 1 44-11  | 11/29/06             | 4.3 I           |
|          | monitor well mis     |                 |
|          | 11/15/04             | 12              |
|          | 06/13/06             | 5.44            |
| TW-12    | 10/31/06             | 17 I            |
|          | 11/30/06             | 9.85            |
|          | monitor well mis     |                 |
|          | 11/16/04             | 12              |
| TW-13    | 10/31/06             | 12 I            |
|          | 11/30/06             | 12.8            |
|          | monitor well mis     |                 |
|          | 06/13/06             | <5<br>59        |
|          | 10/30/06             | 58              |
| TW-14    | 11/30/06             | 19              |

#### Table 2 Summary of Groundwater and Surface Water Analytical Data Countryside Executive Golf Course, Clearwater, Florida HSA Project Number 601-5982-00

|          | Sample Date     | Arsenic (μg/l)  |
|----------|-----------------|-----------------|
|          | GCTL            | 10              |
| Point ID | NADSC           | 100             |
|          | FSWC            | 50              |
|          | 06/13/06        | <5              |
|          | 10/30/06        | <4.8            |
| TW-15    | 11/30/06        | <1.8            |
|          | monitor well mi |                 |
|          | 06/13/06        | <5              |
|          | 10/30/06        | <4.8            |
| TW-16    | 11/28/06        | <1.8            |
|          | monitor well mi |                 |
|          | 11/28/06        | <1.8            |
| TW-17    | monitor well mi | ssing/destroyed |
|          | 10/30/06        | <4.8            |
| TW-18    | 11/28/06        | <1.8            |
|          | monitor well mi | ssing/destroyed |
|          | 11/28/06        | <1.8            |
| TW-19    | monitor well mi |                 |
|          | 12/21/06        | <1.8            |
| TW-20    | monitor well mi | ssing/destroyed |
|          | 07/14/05        | 17.6            |
| ĺ        | 08/01/05        | 12.4            |
| DW 1     | 08/26/05        | 15.2            |
| DW-1     | 11/07/05        | <2.8            |
|          | 11/30/06        | 9.9             |
|          | monitor well mi | ssing/destroyed |
| MW/ 1    | 08/26/05        | 46.9            |
| MW-1     | monitor well mi | ssing/destroyed |
|          | 06/05/06        | <5              |
| MW 1D    | 10/30/06        | 38              |
| MW-1R    | 11/29/06        | <1.8            |
|          | monitor well mi | ssing/destroyed |
| MW-1RR   | 03/16/09        | <4.8            |
|          | 08/26/05        | 119             |
|          | 11/07/05        | 130             |
|          | 05/30/06        | 37.3            |
| MW-2     | 06/13/06        | 79.8            |
|          | 10/30/06        | 400             |
|          | 11/29/06        | 14.1            |
|          | monitor well mi | ssing/destroyed |
|          | 08/26/05        | 159             |
|          | 11/07/05        | 5.4             |
|          | 10/30/06        | 24              |
| MW-3     | 11/29/06        | <1.8            |
|          | 11/07/08        | 35.6            |
|          | 12/08/08        | 47              |
|          | 12/10/10        | 55              |
|          | 08/26/05        | 87              |
|          | 11/07/05        | <2.8            |
| MW-4     | 10/30/06        | 85              |
|          | 11/29/06        | 2.07 I          |
|          | monitor well mi | 0 ,             |
|          | 09/30/08        | 33.8            |
| MW-5     | 11/07/08        | 8.67 I          |
|          | 12/10/10        | 30.2            |
| MW-6     | 09/30/08        | <331            |
|          | 11/07/08        | 4.23            |
|          | 09/30/08        | DRY             |
| MW-7     | 12/10/10        | 5.49 I          |
|          | 12/08/08        | 5 I             |

#### Table 2 Summary of Groundwater and Surface Water Analytical Data Countryside Executive Golf Course, Clearwater, Florida HSA Project Number 601-5982-00

|               | Sample Date                                     | Arsenic (μg/l)   |  |  |  |
|---------------|-------------------------------------------------|------------------|--|--|--|
| Point ID      | GCTL                                            | 10               |  |  |  |
| 1 omt 1D      | NADSC                                           | 100              |  |  |  |
|               | FSWC                                            | 50               |  |  |  |
|               | 09/29/08                                        | 29.7             |  |  |  |
| MW-8          | 11/07/08                                        | 6.62 I           |  |  |  |
|               | 12/09/10                                        | <3.31            |  |  |  |
|               | 09/29/08                                        | 32.4             |  |  |  |
| MW-9          | 12/08/08                                        | <4.8             |  |  |  |
|               | 12/09/10                                        | 5.69 I           |  |  |  |
| MW 10         | 09/29/08                                        | 17.7             |  |  |  |
| MW-10         | 11/07/08                                        | 5.28 I<br>3.55 I |  |  |  |
|               | 12/09/10<br>09/29/08                            | 21.7             |  |  |  |
| MW-11         | 12/08/08                                        | <4.8             |  |  |  |
| 1V1 VV -1 1   | 12/10/10                                        | 3.94 I           |  |  |  |
|               | 09/30/08                                        | <3.31            |  |  |  |
| MW-12         | 12/10/10                                        | <3.31            |  |  |  |
|               | 09/29/08                                        | 58.6             |  |  |  |
|               | 11/07/08                                        | 55.2             |  |  |  |
| MW-13         | 12/08/08                                        | 73               |  |  |  |
|               | 12/10/10                                        | 34.7             |  |  |  |
|               | 12/08/08                                        | 8.1 I / 10.5     |  |  |  |
| MW 14         | 10/15/09                                        | 17 I             |  |  |  |
| MW-14         | 10/21/09                                        | 20 / 16 I        |  |  |  |
|               | 12/10/10                                        | 17.4             |  |  |  |
| MW-15         | 12/15/08                                        | <4.8             |  |  |  |
| MW-16         | 12/10/08                                        | <4.8             |  |  |  |
| MW-17         | 12/15/08                                        | <4.8             |  |  |  |
| MW-18         | 12/12/08                                        | <4.8             |  |  |  |
| MW-19         | 12/12/08                                        | <4.8             |  |  |  |
| 1,1,1,1,1     | 12/10/10                                        | 9.57 I           |  |  |  |
| MW-20         | 12/12/08                                        | <4.8             |  |  |  |
|               | 12/09/10                                        | 8.55 I           |  |  |  |
| MW-21         | 12/12/08                                        | <4.8             |  |  |  |
| MW-22         | 12/12/08                                        | <4.8             |  |  |  |
| 1477.00       | 12/12/08                                        | <4.8             |  |  |  |
| MW-23         | 12/10/10                                        | 14.7             |  |  |  |
| MW 24         | 05/26/11                                        | <3.31            |  |  |  |
| MW-24         | 03/16/09                                        | <4.8             |  |  |  |
| MW-25         | 03/16/09                                        | <4.8             |  |  |  |
|               | 12/10/10                                        | 8.25 I           |  |  |  |
| MW-26         | 11/03/09<br>12/10/10                            | <4.8             |  |  |  |
| MW-27         | 11/03/09                                        | <3.31<br><4.8    |  |  |  |
|               | 11/03/09                                        | <4.8             |  |  |  |
| MW-28         | 12/10/10                                        | <3.31            |  |  |  |
|               | 10/15/09                                        | <4.8             |  |  |  |
| DW-2          | 12/09/10                                        | <3.31            |  |  |  |
| DW2           | 10/15/09                                        | 5.7 I            |  |  |  |
| DW-3          | 12/10/10                                        | <3.31            |  |  |  |
| DW/ 4         | 11/03/09                                        | <4.8             |  |  |  |
| DW-4          | 12/10/10                                        | <3.31            |  |  |  |
|               | Offsite Irrigation Well (Villiage of the Green) |                  |  |  |  |
| Irrigation 3  | 11/07/08                                        | 14.3             |  |  |  |
|               | Surface Water Samples                           |                  |  |  |  |
|               | 5/30/2006                                       | 152              |  |  |  |
| Surface Water | 06/13/06                                        | 49               |  |  |  |
|               | 07/06/09                                        | 49               |  |  |  |
|               | n-Site Irrigation Wells (Countrys               |                  |  |  |  |
| Well 1        | 05/31/06                                        | <5               |  |  |  |
| Well 2        | 05/31/06                                        | 3.94 I           |  |  |  |

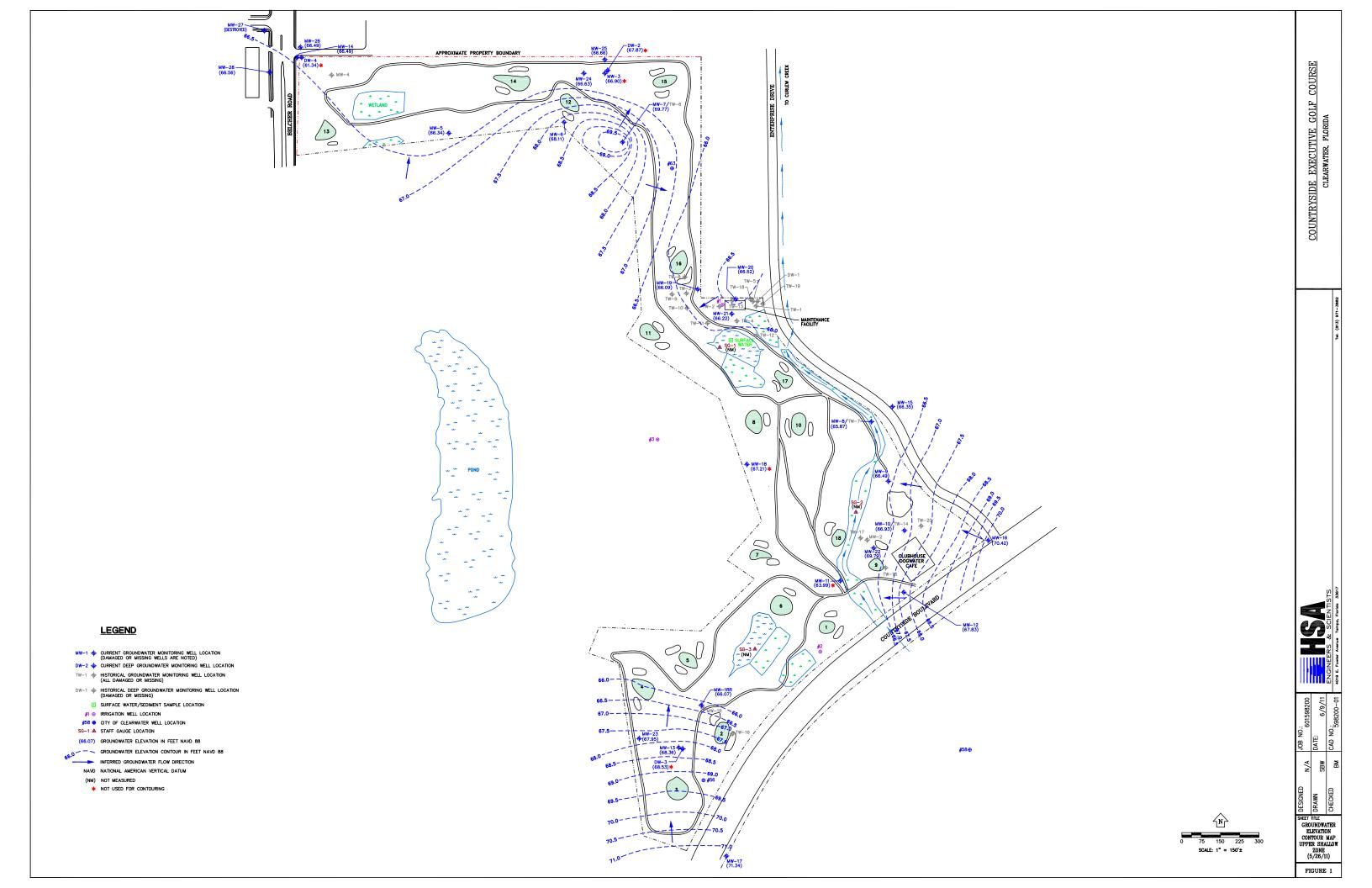
#### Notes:

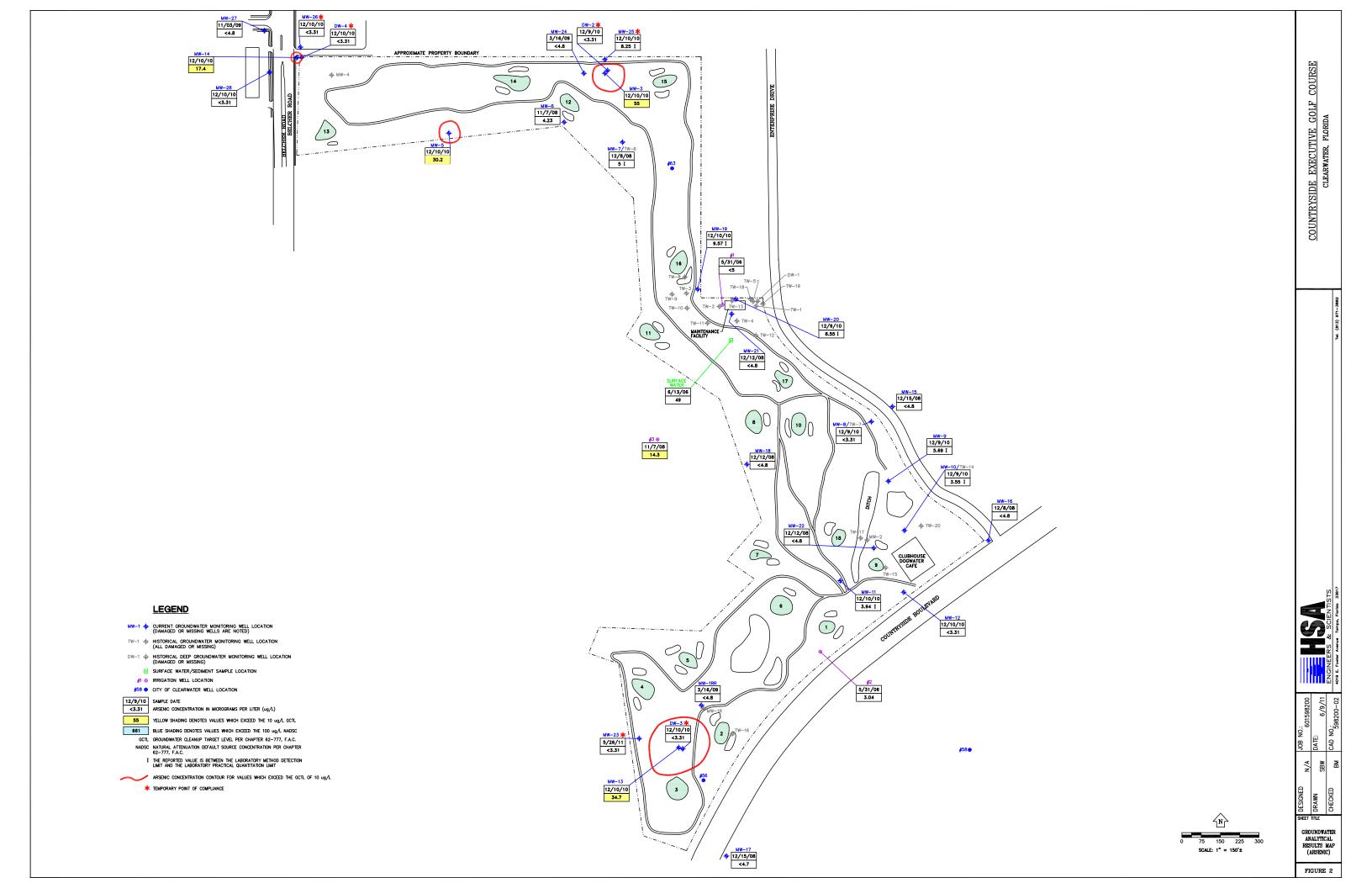
Units given in micrograms per liter ( $\mu g/l$ ).

GCTL - Groundwater Cleanup Target Level, set forth in Chapter 62-777, FAC

NADSC - Natural Attenuation Default Source Concentration, set forth in Chapter 62-777, FAC

 $FSWC - Fresh \ Surface \ Water \ Criteria, \ set \ for th \ in \ Chapter \ 62-777, \ FAC$ 


I - Analyte detected below the quantitation limits.


Red indicates result exceeds GCTL or FSWC

Blue indicates result exceeds NADSC



**FIGURES** 







#### APPENDIX A

**Completed Groundwater Sampling Data Sheet** 

## Form FD 9000-24 GROUNDWATER SAMPLING LOG

| SITE NAME: CONTROL GOLF COURSE SITE LOCATION: CLEAR WOLFER  WELL NO: MW 33 SAMPLE ID: GW  PURGING DATA  WELL DIAMETER (inches): 7 TUBING DIAMETER (inches): 4 WELL SCREEN INTERVAL DEPTH: STATIC DEPTH TO WATER (feet): 8.15 PURGE PUMP TYPE feet to 3 feet 13 TO WATER (feet): 8.15 OR BAILER:  WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable)  = ( 13 feet - 8.15 feet) X 0.16 gallons/foot = 0.7716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PURGING DATA  WELL DIAMETER (inches): 7  WELL SCREEN INTERVAL DEPTH: STATIC DEPTH TO WATER (feet): 7  DIAMETER (inches): 7  WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gallons<br>gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gallons<br>gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $= (1)$ feet $= 1$ feet $\times (1)$ gallons/foot $= (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (only fill out if applicable) = gallons + ( gallons/foot X feet) + gallons =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 10.15 PURGING INITIATED AT: 2:00 PURGING ENDED AT: 2:21 PURGED (gallor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s): 1,05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TIME VOLUME PURGED (gallons) CUMUL. VOLUME PURGE RATE (gpm) VOLUME (gpm) (feet) PURGED (gallons) (gpm) (feet) PURGED (gpm) PURGED (gpm) (feet) PURGED (gpm) (gpm | COLOR/<br>ODOR<br>(describe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2:15 75 .75 .05 8.62 6.11 1935 27.5 .07 1.82 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rellow/No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7:18 .15 .90 .05   6.10 1.937 97,5 .07 1.12 53<br>2:21 .15 1.05 .05   6.10 1.937 578 .07 .73 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2:21 15 1.05 -05 \$ 6.10 1.937 27.8 -07 -73 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.00; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1.25" = 0.06; 1. | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.1010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010; 5/8" = 0.010 | GALLEY TO THE STATE OF THE STAT |
| PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cily)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SAMPLED BY (PRINT) / AFFILIATION: SAMPLER (ST) SIGNATURE (ST)  SAMPLING INITIATED AT: 2;21 SAMPLING ENDED AT: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PUMP OR TUBING DEPTH IN WELL (feet): 10-15  TUBING MATERIAL CODE: PE  INITIATED AT: 2, 2   ENDED AT: 4  FILLD-FILTERED: Y Filtration Equipment Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FIELD DECONTAMINATION: PUMP Y N TUBING Y N (replaced) DUPLICATE: Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ANALYSIS AND OD FOLIDATATE FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IPLE PUMP<br>OW RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ID CODE CONTAINERS CODE VOLUME USED ADDED IN FIELD (mL) PH METHOD CODE (mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | per minute)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 PE NOWE AMONGO10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| REMARKS;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SAMPLING EQUIPMENT CODES: APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;  RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ony)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH:  $\pm$  0.2 units Temperature:  $\pm$  0.2 °C Specific Conductance:  $\pm$  5% Dissolved Oxygen: all readings  $\leq$  20% saturation (see Table FS 2200-2); optionally,  $\pm$  0.2 mg/L or  $\pm$  10% (whichever is greater) Turbidity: all readings  $\leq$  20 NTU; optionally  $\pm$  5 NTU or  $\pm$  10% (whichever is greater)

Revision Date: February 12, 2009



#### APPENDIX B

**Complete Laboratory Analytical Results** 



# SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY Florida Division



Florida # E84207 Texas # T104704408-10-2 South Carolina # 96011001 North Dakota # R-178



California Louisiana Kansas Arkansas # 07253CA # 02025 # E-10385 # 10-039-0

\_\_\_\_\_

#### - CERTIFICATE OF ANALYSIS -

**Report Date:** 06/06/2011

To: Brian Moore
HSA Engineers & Scientists
4019 E Fowler Ave.
Tampa, FL 33617

Work 813-971-3882 FAX

**PROJECT ID:** Countryside Golf Course/601-5982-00

**WORK ORDER:** 3503031

**DATE RECEIVED:** Thursday, May 26, 2011

Project Notes:

(†): Short Hold Time Analysis Date

Samples reported on dry weight basis

All test results in this report pertain only to the samples as submitted.

Spectrum Analytical, Inc. FL Division Contact: Mark Gudnason / extension: 242
8405 Benjamin Road, Suite A• Tampa, Florida 33634
813-888-9507• FAX: 813-889-7128
Website: www.pelab.com

# Spectrum Analytical, Inc. FL Division featuring Hanibal Technology

#### **DATA QUALIFIER CODES**

State of Florida, Department of Environmental Protection and Department of Health Rehabilitative Services / NELAC

- The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
- **J** Estimated value; value not accurate. This code shall be used in the following instances:
  - 1. Surrogate recovery limits have been exceeded.

L

- 2. No known quality control criteria exits for the component.
- 3. The reported value did not meet the established quality control criteria for either precision or accuracy but falls within the NELAC marginal exceedance range.
- 3M.The reported value did not meet the established quality control criteria for either precision or accuracy and falls beyond the NELAC range for marginal exceedances.
- 3R.The RPD for the LCSD exceeds the laboratory established control limits.
- 4. The sample matrix interfered with the ability to make an accurate determination.
- 5. The data is questionable because of improper laboratory or field protocols (e.g. composite sample was collected instead of a grab sample).
- Off-scale high. Actual value is known to be greater than the value given. To be used when the concentration of the analyte is above the acceptable limit for quantitation (exceeds the linear range of the highest calibration standard) and the calibration curve is known to exhibit a negative deflection.
- Sample held beyond acceptable holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for the sample preparation or analysis.
- Indicates that the compound was analyzed for but not detected above the method detection limit (MDL).
- Indicates that the analyte was detected in both the sample and the associated method blank. Note: The value in the blank shall not be subtracted from associated samples.
- Y
  The laboratory analysis was from an unpreserved or improperly preserved sample.
  The data may not be accurate.

#### CASE NARRATIVE METALS

Spectrum Analytical Inc. Lab Reference No./SDG: 3503031

Client: HSA

#### I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

#### II. HOLDING TIMES

**A.** Sample Preparation: All holding times were met.

**B.** Sample Analysis: All holding times were met.

#### III. METHOD

Analyses were performed according to the Spectrum Analytical Inc. Standard Operating Procedures and EPA Method 6010B for ICP metals.

#### IV. PREPARATION

Water samples were prepared according to PEL Laboratory's Standard Operating Procedures and EPA Method 3010A.

#### V. ANALYSIS

#### A. Calibration:

All acceptance criteria were met.

#### B. Blanks:

#### 1. Calibration Blanks:

All acceptance criteria were met.

#### 2. Method Blanks:

All acceptance criteria were met.

#### C. Spikes:

#### 1. Laboratory Control Spikes (LCS):

All acceptance criteria were met

#### 2. Post Digestion Spike:

All acceptance criteria were met.

#### 3. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD):

#### CASE NARRATIVE METALS

Spectrum Analytical Inc. Lab Reference No./SDG: 3503031

Client: HSA

No spikes requested by client.

#### D. Duplicate:

No sample duplicates are reported with this method. (Spike duplicates are referenced above in section C. Spikes.)

#### E. Serial Dilution:

All acceptance criteria were met.

#### F. ICP Interference Check Samples:

All acceptance criteria were met.

#### G. Samples:

Sample analysis proceeded normally.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum Analytical Inc., both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

Name: Troy L. Roberts Title: Inorg. Manage

SIGNED: DATE: 06/06/2011

#### CASE NARRATIVE METALS DISSOLVED

Spectrum Analytical Inc. Lab Reference No./SDG: 3503031

Client: HSA

#### I. RECEIPT

Exceptions encountered upon receipt are addressed in the Sample Receipt Confirmation Report, included with the Chain-of-Custody documentation, or communication included in the addendum with this package.

#### II. HOLDING TIMES

**A.** Sample Preparation: All holding times were met.

**B.** Sample Analysis: All holding times were met.

#### III. METHOD

Analyses were performed according to the Spectrum Analytical Inc. Standard Operating Procedures and EPA Method 6010B for ICP metals.

#### IV. PREPARATION

Water samples were prepared according to PEL Laboratory's Standard Operating Procedures and EPA Method 3010A.

#### V. ANALYSIS

#### A. Calibration:

All acceptance criteria were met.

#### B. Blanks:

#### 1. Calibration Blanks:

All acceptance criteria were met.

#### 2. Method Blanks:

All acceptance criteria were met.

#### C. Spikes:

#### 1. Laboratory Control Spikes (LCS):

An LCS/LCSD set was analyzed.

All percent recovery and relative percent difference (RPD) criteria were met.

#### 2. Post Digestion Spike:

All acceptance criteria were met.

#### 3. Matrix Spike/Matrix Spike Duplicate Samples (MS/SD):

#### CASE NARRATIVE METALS DISSOLVED

Spectrum Analytical Inc. Lab Reference No./SDG: 3503031

Client: HSA

No spikes requested by client.

#### D. Duplicate:

No sample duplicates are reported with this method. (Spike duplicates are referenced above in section C. Spikes.)

#### E. Serial Dilution:

All acceptance criteria were met.

#### F. ICP Interference Check Samples:

All acceptance criteria were met.

#### G. Samples:

Sample analysis proceeded normally.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum Analytical Inc., both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as, verified by the following signature.

Signature:

Name: Troy L. Roberts Title: Inorg. Manager

**SIGNED:** 

**DATE:** 06/06/2011

FLDOH #E84207

To: Brian Moore WORK ORDER: 3503031

HSA Engineers & Scientists PROJECT ID: Countryside Golf Course/601-5982-00

Lab#: 350303101 Collection Information:

**Client ID:** MW-23 **Sample Date:** 5/26/2011 2:25:00 PM

Matrix: W

| Parameter | Method         | Results | Analysis<br>Date | Prep<br>Date     | Units | MDL  | RL | Dilution<br>Factor |
|-----------|----------------|---------|------------------|------------------|-------|------|----|--------------------|
| Arsenic   | 6010           | 3.31 U  | 06/03/2011 16:38 | 05/31/2011 11:30 | UG/L  | 3.31 | 10 | 1                  |
| Arsenic   | 6010 DISS DISS | 3.31 U  | 06/03/2011 19:50 | 05/31/2011 11:30 | UG/L  | 3.31 | 10 | 1                  |



To: Brian Moore

HSA Engineers & Scientists

**WORK ORDER:** 3503031

**PROJECT ID:** Countryside Golf Course/601-5982-00

**QC SUMMARY** 

**METHOD:** 6010

Method Blank: 86713MB Matrix: WQ

Associated Lab Samples: 350303101 86713MB 86714LCS

|           |         | Analysis | Prep      |       |      | Dilution |  |
|-----------|---------|----------|-----------|-------|------|----------|--|
| Parameter | Results | Date     | Date      | Units | RL   | Factor   |  |
| Arsenic   | U       | 6/3/2011 | 5/31/2011 | UG/L  | 3.31 | 1        |  |

LABORATORY CONTROL SAMPLE: 86714LCS WQ Matrix: **SPIKE** LCS **SPIKE** % REC RPD **PARAMETER** UNITS CONC **RESULT** % REC LIMITS **RPD** LIMIT 500 477 95.4 Arsenic ug/L (80-120)

FLDOH #E84207

To: Brian Moore

HSA Engineers & Scientists

**WORK ORDER:** 3503031

**PROJECT ID:** Countryside Golf Course/601-5982-00

**METHOD:** 6010 DISS DISS

Method Blank: 86718MB Matrix: WQ

Associated Lab Samples: 350303101 86718MB 86719LCS 86720LCSD

| Parameter          | Results |       | nalysis<br>Date | Prep<br>Date | Unit       | s        | RL   | _   | Dilution<br>Factor |  |
|--------------------|---------|-------|-----------------|--------------|------------|----------|------|-----|--------------------|--|
| Arsenic            | U       | 6/    | 3/2011          | 5/31/2011    | UG/I       | _        | 3.31 |     | 1                  |  |
| LABORATORY CONTROL | SAMPLE: | 86719 | DLCS            | Matri        | x :        | WQ       |      |     |                    |  |
|                    |         | SPIKE | LCS             | SPIKI        | <b>E</b>   | % REC    |      |     | RPD                |  |
| PARAMETER          | UNITS   | CONC  | RESUL           | T % RE       |            | LIMITS   |      | RPD | LIMIT              |  |
| Arsenic            | ug/L    | 500   | 447             | 89.4         |            | (80-120) | )    |     |                    |  |
| LABORATORY CONTROL | SAMPLE: | 86720 | )LCSD           | Matri        | <b>x</b> : | WQ       |      |     |                    |  |
|                    |         | SPIKE | LCS             | SPIKI        | Ξ          | % REC    |      |     | RPD                |  |
| PARAMETER          | UNITS   | CONC  | RESUL           | T % REG      |            | LIMITS   |      | RPD | LIMIT              |  |
| Arsenic            | ug/L    | 500   | 428             | 85.6         |            | (80-120) | ) 4  | 1.3 | 20                 |  |

FLDOH #E84207

To: Brian Moore

HSA Engineers & Scientists

**WORK ORDER:** 3503031

**PROJECT ID:** Countryside Golf Course/601-5982-00

Brian C. Spann Laboratory Manager

or

Mark Gudnason Technical Director



# CHAIN OF CUSTODY RECORD

Special Handling: TAT- Indicate Date Needed:

All TATs subject to laboratory approval.

Min. 24-hour notification needed for rushes.

· Samples disposed of after 60 days unless otherwise instructed

| A DIVISIONOL SPECIAL                                                                                                                  | M ANALY FIGAL, TMC, Feelining HANTBA            | L TECHNOLOGY        |                             |        | P             | age _         |                  | _ of .         |        |                                             |                               |                                                  |              | oth                     | erwise ins                     | structed.                  |                    |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------|-----------------------------|--------|---------------|---------------|------------------|----------------|--------|---------------------------------------------|-------------------------------|--------------------------------------------------|--------------|-------------------------|--------------------------------|----------------------------|--------------------|
|                                                                                                                                       | Brian Ma                                        |                     | Invoice 7 7019 Tan P.O. No. | 1pc    | FL            |               | 361              | 7_             |        |                                             | Proj<br>Site<br>Loca<br>Sam   | ect No.:<br>Name:<br>ntion: <u>(</u><br>pler(s): | Cou<br>Clean | ol-<br>nto<br>www<br>oe | -598<br>yside<br>later<br>Orfa | z-00<br>e Golf Co<br>nides | ourse<br>ate: FL   |
| 1=Na <sub>2</sub> S2O <sub>3</sub> 2=HCl 3=H <sub>2</sub> SO <sub>4</sub> 4=HNO <sub>3</sub> 5=NaOH 6<br>8= NaHSO <sub>4</sub> 9= 10= |                                                 |                     |                             |        |               |               |                  |                |        |                                             | List preservative code below: |                                                  |              |                         | No                             | tes:                       |                    |
| O=Oil SW                                                                                                                              | ng Water GW=Gro = Surface Water Se X2= G=Grab C | O=Soil SL=Slu<br>X3 | dge A=Air                   |        | ]<br>×        | /OA Vials     | # of Amber Glass | of Clear Glass |        | Arsnic 6010                                 | 10 8610                       |                                                  | alyses       |                         |                                | ☐ Level I                  |                    |
| Lab Id:                                                                                                                               | Sample Id:                                      | Date: 5-26-11       | Time: 1425                  | C Type | G-W<br>Matrix | # of VOA      | / Jo #           | ) Jo #         | # of F | \<br>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | < Arsenic                     | :                                                |              |                         |                                | State specific rep         | oorting standards: |
|                                                                                                                                       |                                                 |                     |                             |        |               |               |                  |                |        |                                             |                               |                                                  |              |                         |                                |                            |                    |
|                                                                                                                                       |                                                 |                     |                             |        |               |               |                  |                |        |                                             |                               |                                                  |              |                         |                                |                            |                    |
| D.F. mail to                                                                                                                          |                                                 |                     |                             |        | /) R/e        | <b>ZiA</b> qu | ished            | l løy:         |        |                                             |                               | Rece                                             | eived b      | by:                     |                                | Date:                      | Time:              |
| EDD Format                                                                                                                            | pH < 2 6010                                     | pH >2               |                             |        | pl            | h             | M                | l              | -      |                                             | M                             | y                                                |              |                         |                                | 526-11                     | IS40               |
| Condition upo                                                                                                                         | on receipt: 🗖 Iced 🛭                            | Ambient W°C 4.      | 1                           |        |               |               |                  |                |        |                                             |                               |                                                  |              |                         |                                |                            |                    |

### SAMPLE RECEIPT CONFIRMATION SHEET

**Client Information** 

| SDG:            | 3503031              |        | Req:                | 1310                 |     |
|-----------------|----------------------|--------|---------------------|----------------------|-----|
| Client:         | HSA                  |        | Project:            | Generic              |     |
| Level:          | 1                    |        | Date Rec'd:         | 5/26/2011 3:40:00 PM |     |
| Rec'd via:      | Client               |        | Due Date:           | 6/2/2011             |     |
|                 |                      | Sample | Verification        |                      |     |
| Samples/Cool    | er Secure?           | Yes    | All Samples on CO   | C accounted For?     | Yes |
| Temperature of  | of Samples(Celsius)  | 4.7C   | All Samples Rec'd   | ntact?               | Yes |
| pH Verified?    |                      | Yes    | Sample Vol. Suffici | ent For Analysis     | Yes |
| pH WNL?         |                      | Yes    | Samples Rec'd W/l   | Hold Time?           | Yes |
| Soil Origin (Do | omestic/Foreign):    |        | Are All Samples to  | be Analyzed?         | Yes |
| Site Location/  | Project on COC?      | Yes    | Correct Sample Co   | ntainers?            | Yes |
| Client Project  | # on COC?            | Yes    | COC Comments wr     | itten on COC?        | Yes |
| Project Mgr. Ir | ndicated on COC?     | Yes    | Samplers Initials o | 1 COC?               | Yes |
| COC relinquis   | hed/Dated by Client? | Yes    | Sample Date/Time    | Indicated?           | Yes |
| COC Received    | d/Dated by PEL?      | Yes    | TAT Requested:      |                      | STD |
| Specific Subc   | ontract Indicated?   | No     | Client Requests Ve  | rbal Results?        | No  |
| Samples Rece    | eived By             | Client | Client Requests Fa  | xed Results?         | No  |
| PEL to Condu    | ct ALL Analyses?     | Yes    |                     |                      |     |
| Radioactivity   | Check?               | No     |                     |                      |     |
| COC Present?    | ?                    | Yes    |                     |                      |     |

|             | 4 |
|-------------|---|
| PEER REVIEW |   |

### **End Of Report**

060611 1039